Chapter 8: Structures and Unions 251

8.8 Structures and Functions

Structure variables may be passed to functions just like any other variables. It is also possible for
functions to return structure variables through the use of the return statement. Note that any number
of structure variables can be passed to the function as arguments in the function call, but only one
structure variable can be returned from the function by the return statement. The program
student5 . cpp illustrates the passing of structure parameters and returning of a structure value.

// student5.cpp: structure data type parameter passing
#include <iostream.h>
struct Student
{
int roll_no;
char name([25];
char branch(15];
int marks;
}i
// reads data of type Student and returns
Student read ()

{
student dull;
cout << "Roll Number ? *;
cin >> dull.roll_no;
cout << "Name ? ";
cin >> dull.name;
cout << "Branch ? ";
cin >> dull.branch;
cout << "Total Marks <max-325> ? ";
cin >> dull.marks;
return dull; // returning structure variables
}
// displays contents of the structure Student
void show(Student genius) // takes structure type parameter
{
cout << "Roll Number: " << genius.roll _no << endl;
cout << "Name: " << genius.name << endl;
cout << "Branch: " << genius.branch << endl;
cout << "Percentage: " << genius.marks*(100.0/325) << endl;
}
void main()
{

// data definitions of 10 students
student s[10];

int n;
cout << "How many students to be processed <max-10>: ";
cin >> n; /

// -read student/data
for(int i = 0; i < n; i++)
{

cout << "Enter data for student * << i+l << “..." << endl;

252 Mastering C++

s[i] = read();
}

cout << "Students Report" << endl;

// process student data
for(i = 0; i < n; i++)
show(s([i]);

}
Run

How many students to be processed <max-10>: 2
Enter data for student 1...
Roll Number ? 3

Name ? Smrithi

Branch ? Genetics

Total Marks <max-325> ? 295
Enter data for student 2...
Roll Number ? 10

Name ? Bindhu

Branch ? MCA

Total Marks <max-325> ? 300
Students Report

Roll Number: 3
Name: Smrithi
Branch: Genetics
Percentage: 90.7692
Roll Number: 10
Name: Bindhu
Branch: MCA
Percentage: 92.3077

Passing Structure to a Function
In main (), the statement

show(s[i]):
passes a parameter of type structure Student to show() using the pass-by-value mechanism. All
the members of the structure s [1] are assigned to respective members of the formal structure-param-
eter genius in the function show (). Any modification to the members of the structure variable
genius in show () will not be reflected in the actual parameter s [i].

Returning Structure from Function
Similar to variables of the standard data types, a variable of a structure type can be assigned to another
variable of the same type. It is performed by using the assignment operator, which copies all the
members by a one-to-one correspondence.
In main (), the statement
s{i] = read();
invokes read() and assigns all the members of a structure returned by read() to the structure

Chapter 8: Structures and Unions 253

variable s {11. Here all the members ae copied to the destination variable on a member-by-member
basis as shown in Figure 8.10.

x’ S
3 XXX 3 3
.
Smrithi XXX Smrithi Smrithi
x’ RN
Genetics XXX Genetics Genetics
4 - - \\
X N
295 XXX 295 295
L_,////~\“ o’ =
(a) s1 (b) Student s2; (¢) s2 = s1;

Figure 8.10: Structure assignment -- copied on a member-by-member basis

Passing an Array of Structures to Functions

Passing an array of structures to functions involves the same syntax and propertics like passing any
array to a function. Pass by reference method is employed and consequently, any changes made to the
structures by the function are visible throughout the program. The program studenté . cpp illus-
trates the passing an array of structures to a function.

// studentb.cpp: passing array of structures
#include <iostream.h>
struct Student
{

int roll_noa

char name|25];.

char branch(157;

int marks;
Y
// return index to a structures which holds student details who
// scores highest marks in the university examination
int HighestMarks{ Student s[], int count)
{

int index, big;

big = s{0].marks;

index = 0;

for{ int 1 = 1; 1 < count; i++)

{

if(s(i].marks > big !
{
big = s[i] .marks;

254 Mastering C++

index = i;
}
}
return index;
}
// reads data of type Student and returns
Student read()
{
Student dull;
cout << "Roll Number ? *;
cin >> dull.roll_no;
cout << "Name ? *;
cin >> dull.name;
cout << "Branch ? *;
cin >> dull.branch;
cout << "Total Marks <max~325> ? ";
cin >> dull.marks;
return dull; // returning structure variables
}
// displays contents of the structure Student
void show(Student genius) // takes structure type parameter
{
cout << "Roll Number: " << genius.roll_no << endl;
cout << “Name: " << genius.name << endl;
cout << *Branch: " << genius.branch << endl;
cout << "“Percentage: " << genius.marks*(100.0/325) << endl;
}
void main ()
{
// data definitions of 10 students
Student s[10];
int _n, id;
cout << "How many students to be processed <max-10>: *;
cin >> n;
// read student data
for(int 1 = 0; i < n; i++)
{
cout << "Enter data for student " << i+l << "..." << endl;
s[i] = read():
}
id = HighestMarks(s, n);
cout << "Details of student scoring highest marks..." << endl;
show(s[id]);

—~

Run

How many students to be processed <max-10>: 3
Enter data for student 1...

Roll Number ? 3

Name ? Smrithi

Chapter 8: Structures and Unions 255

Branch ? Genetics

Total Marks <max-325> ? 295
Enter data for student 2...
Roll Number ? 15

Name ? Rajkumar

Branch ? Computexr

Total Marks <max-325> ? 315
Enter data for student 3...
Roll Number ? 7

Name ? Laxmi

Branch ? Electronics

Total Marks <max-325> ? 255
Details of student scoring highest marks...
Roll Number: 15

Name: Rajkumar

Branch: Computer
Percentage: 96.9231

In main (), the statement
id = HighestMarks(s, n);
invokes the function HighestMarks () and finds the student with the highest marks. It accepts two
arguments, the first is an array of structures and the second argument is an integer which denotes the
number of students. The index of the student record with the highest marks is found by this function
and returned to its caller (in this case, main () is the caller).

8.9 Data Type Enhancement Using typedef

C++ provides a facility called type definition by which new type names can be created. This is accom-
plished by using the typedef keyword as shown in Figure 8.11.

standard or user for pointer/reference
defined data type type only

%

typedef ExistingTypeName [*/&] NewTypeName;

Figure 8.11: Enhancing existing data types

ExistingTypeName is the name of an existing data type, and NewTypeName is the new user
defined data type. Notice that a new user defined data type is created only from the existing data types
such as int, float, struct, etc. The following examples illustrate the concepts introduced.

typedef int Length;
Length now becomes a synonym for int and variables can be defined using the new type name.
Length denotes a type name like int and is not a variable. Consider the following statement:
vLength lenl, len2;
The above statement defines two variables of type integer and is equivalent to

int lenl, lenZ;:

256 Mastering C++

Note that the operations possible on the variables lenl and len2 are precisely. the same as the
operations permitted on integer variables defined using the keyword int. Consider the following set of
statements.

typedef int emprec(10];

emprec personl, person2;
The type emprec is now a new data type which is a 10 element array of integer quantities. personl
and person2 are two variables of this new type and each variable is a 10 element array of integer
quantities. The following are valid expressions:

personl[3] access the 4th element of personl
personl access the starting address of personl
&personl[0] access the starting address of personl

The typedef statement for defining string data type is
typedef char * String;

It can be used as follows:
String name;

It is equivalent to
char * name;

The typedef can be used to create reference type (alias) integer data type as follows:
typedef int & INTREF;"

Aliases for variables can be created using INTREF as follows:
INTREF b = c;

It is effectively equivalent to
int &b = ¢;

Benefits of the typedef statement
There are several important uses of the typedef statement;

+ It helps in effective documentation of a program, thus increasing its clarity. This in turn enhances the
ease of maintenance of the program, which is an important part of software management.

 The typedef statement is often used for declaring new data types involving structures. A new data
type representing the structure is declared using the typedef keyword. Since all structure declara-
tions in C++ are typedef by default, explicit use of the st ruct keyword during structure variable
definition is optional. It is used explicitly when the structure’s pointer or alias type is to be created.
The usage of the typedef statement is illustrated below:

typedef struct tag

{
type memberl;
type member?2;

type membern;
} [*/&] NewDataType;

Consider the following declarations:
struct date

{

Chapter 8: Structures and Unions 257

int day;
int month;
int year;
}i ‘
typedef date * DATEPTR;

The type name DATEPTR can be used to define a pointer to the structure date as follows:
DATEPTR dp:

It 1s equivalent to
date * dp;

« The third important use of the typedef statement is its usage in writing portable programs. The
sizes of different data types are dependent on the compiler. For instance, the size of an integer is two
bytes on a 16-bit compiler and four bytes on a 32-bit compiler. Portability is achieved by type-
declaring an integer as follows:

typedef long int INT;

In the program, use definitions such as

INT a, b;
instead of the statement
int-a, b;

to increase the portability of a program.

8.10 Structures and Encapsulation

Structures in C++ have undergone a major revision. Like C structures, C++ structures also provide a
mechanism to group together data of different types into a single unit. In addition to this, C++ allows to
associate functions as part of a structure. Thus, C++ structures provide a true mechanism to handle
data abstraction. Such structures have two types of members: data members and member functions.
(See Figure 8.12) Functions defined within a structure can operate on any member of the structure.

The program complex.cpp illustrates the concept of associating functions operating on the
structure members. The functions enclosed within a structure can access data or other member func-
tions directly. Similar to the data members, member functions can be accessed using the dot operator.

struct complex

int x;

data members
int y;

void read()

member functions
void show()

Figure 8.12: Functions as a part of C++ structures

258 Mastering C++

// complex.cpp: functions as a part of C++ structures
#include <iostream.h>

#include <math.h>

struct complex

{
int x; // real part
int y; // imaginary part
void read()
{
cout << "Real part ? *;
cin >> x;
cout << "Imaginary part ?";
cin >> y;
}
void show({ char *msg)
{
cout << msg << X;
if(y < 0)
cout << "-i";
else
cout << "+i";
cout << fabs(y) << endl;
}
void add(complex c2)
{
X += C2.X;
y += c2.y;
}
}:

void main ()
(
complex cl, c2, c3;
cout << "Enter complex number cl .." << endl;
cl.read();
cout << “"Enter complex number c2 .." << endl;
c2.read();
cl.show("cl = ");
c2.show("c2 = ");
c3 = cl; // assignment
c3.add(c2); // e3 = c3 + ¢2;
c3.show(Yc3 =cl + c2 =");
}

Run

Enter complex number cl ..
Real part ? 1

Imaginary part ?2

Enter complex number c2 ..
Real part ? 3

Imaginary part ? 4

cl = 1+i2

Chapter 8: Structures and Unions 259

c2 = 3+i4
c3 = cl + ¢c2 = 4+i6
In main (), the statement
cl.read();
invokes the member function read (), defined in the structure complex. The data members of the
variable c1 are assigned with the input values. The statement,
cl.show("cl = ");
displays data members with suitable messages. The statement,
c3 = cl; // assignment
assigns the contents of all the data members of the variable c1 to corresponding members of c2. The
statement,
c3.add(c2); // ¢3 = c3 + c2;
adds the contents of the variable c2 to c3.

Note that, structures and classes in C++ exhibit the same set of features except that structure members
are public by default, whereas class members are private by default. Most of the C++ programimners
prefer to use a class to group data and functions; a structure to group only data which are logically
related. Hence, through out this book, a construct called class (instead of struct) is used as a
means for implementing OOP concepts. More details on classes can be found in the chapter: Classes
and Objects.

8.11 Unions

A union allows the overlay of more than one variable in the same memory area. Normally, each and every

‘variable is stored in a separate location and as a result, each one of these variables have their own
addresses. Often, it is found that the variables used in a program appear only in a small portion of the
source code. Consider the following situation to illustrate the benefits of union data type:

Suppose, a string of 200 bytes is needed to store filename in the first 500 lines of the code only, and
another string of 400 bytes is needed to use as buffer in the rest of the code (that is from the 500" line
onwards) Note that, no part of the code will access both the variables simultaneously. In such a
situation, it would be a waste of memory if two arrays of 200 bytes and 400 bytes are defined; it requires
600 bytes of memory. The union provides a means by which the memory space can be shared, and only
400 bytes of memory is needed.

Declaring a Union

In terms of declaration syntax, the union is similar to a structure as shown in Figure 8.13. The method
used to declare a structure is adopted to declare a union. A union data type is like a structure, except
that it allows to define variables, which share storage space. Note the only change is the substitution of
the keyword struct by the keyword union. The rest of the discussion regarding the declaration is
the same as that given for the structure (i.e., even functions can be a part of union).

The compiler will allocate sufficient storage to accommodate the largest element in the union. Unlike
a structure, members of a union variable occupy the same locations in memory (starting at the zero
offsets). Thus, updating one member will overwrite the other. Elements of a unicn type variable are
accessed in the same manner as the elements of a structure.

260 Mastering C++

| keyword , | union name I
{

union UnionName

DataType memberl;
DataType memberl; union members

DataType memberN;
Y

Figure 8.13: Union declaration

The memory space required for defining a variable of the union is:
max(sizeof (memberl), sizeof(member2,, ..., sizeof (memberN))

That is, the member of biggest size should fit in the common memory space.

Defining Variables
Union variables can be defined at the point of union declaration or can be defined separately as and
when required. Consider the following declaration: '
union X // union declaration
{
“int a;
char ch;
double b;
Yi
The variables of the above union X can be defined as follows:
union X x1;
The storage space required to represent the variable x1 is max(sizeof(int), sizeof(char), sizeof(double)).
At any point of time, the union var#able can hold data of any one of its members. It is the responsibility
of the programmer to decide to which of its members the data stored in the union variable is meaningful.

Member Access
Members of the union can be accessed using either the dot or the arrow (->) operator. It is similar to
accessing the structure variable. Consider the following declaration:

union person
{
char name([25];
int idno;
float salary;
}:
The variables of the above union person can be defined as follows:
union person varl, *var2; // varl is value variable, var2 is pointer
The statement to assign the address of a variable varl to the pointer variable var?2 is as follows:
var2 = &varl;
The individual members can be accessed as follows:

varl.name access the name

Chapter 8: Structures and Unions 261

varl.idno access the idno
var2->salary access the salary

The members can be assigned in the same way as the members of a structure. For instance,
varl.idno = 20;
strepy(varl.name, "Vijayashree");

the content of the members of the union variable var1 can be displayed as follows: -

cout << varl.name;

The program union. cpp illustrates the usage of union to share the storage space.

// union.cpp: union of two strings
#include <iostream.h>
#include <string.h>
union Strings
{
char filename[200];
char output[400];
}i
void main()
{

Strings s;

1.,
strcpy(s.filename, "/cdacb/usrl/raj/oops/microkernel/pserver.cpp");
cout << "filename: " << s.filename << endl;
VAR
/...,
strcpy(s.output, "OOPs is a most complex entity ever created by humans*);
cout << "output: " << s.output << endl;
cout << "Size of union Strings = " << sizeof(Strings);
}
Run

filename: /cdacb/usrl/raj/oops/microkernel/pserver.cpp
output: OOPs is a most complex entity ever created by humans
Size of union Strings = 400

8.12 Differences between Structures and Unions

Structures and unions have the same syntax in terms of their declaration and definition of their vari-
ables. However, they differ in the amount of storage space required for their storage and the scope of
the members.

Memory Allocation

The amount of memory required to store a structure variable is the sum of the size of all the members. On
the other hand, in the case of unions, the amount of memory required is always equal to that required by
its largest member. The program sudif £ . cpp illustrates the memory requirements for variables of the
structure and union types.

262 Mastering C++

// sudiff.cpp: memory requirement for structures and unions
#include <iostream.h>
struct
{
char name[25];
int idno;
float salary;
} emp;
union
{
char name[25];
int idno;
float salary;
} desc;

void main ()

{
cout << "The size of the structure is " << sizeof(emp) << endl;
cout << "The size of the union is " << sizeof(desc) << endl;

}

Run
The size of the structure is 31
The size of the union is 25

Operations on Members

Only one member of a union can be accessed at any given time. This is because, at any instant, only one
of the union variables can be active. The general rule for determining the active member is: only that
member which is updated can be read. At this point, the other variables will contain meaningless
values. It is the responsibility of the programmer to keep track of the active members, The program

uaccess. cpp illustrates accessing of a union variable and its members.

// uaccess.cpp: accessing of union members
#include <iostream.h>
#include <string.h>
union emp
{
char name[25];
int idno;
float salary;
}:
void show(union emp e)
{
cout << "Employee Details ..." << endl;
cout << "The name is " << e.name << endl;
cout << "The idno is " << e.idno << endl;
cout << "The salary is " << e.salary << endl;

Chapter 8

void main ()

{
union emp e;
strcpy (e.name,
show(e);
e.idno = 10;
show(e)
e.salary = 9000;
show(e);

// or emp e;
Rajkumar) ;

}

Run

Employee Details ...

The name is Rajkumar

The idno is 24914

The salary is 2.83348e+26
Employee Details ...

The name is

The idno is 10

The salary is 2.82889%e+26
Employee Details ...

The name is

The idno is -24576

The salary is 9000

: Structures and Unions

The status of the variable e after execuion of each one of the following:

1. strcpy (e.name, "Rajkumar");
2.e.idno = 10; and
3.e.salary = 9000;

263

is shown in Figure 8.14a, 8.14b, 8.14c respectively. Note that, access of non active members will lead to

meaningless values.

(a) strcpy(e.name, "Rajkumaxz");
union emp
char name[25] 1
int idno;—“‘iaa' f
float salary;
Y
XXX 25 Rajkumar 10 9000

union emp e;

Figure 8.14:

(b) e.idno=10;

Union variable initialization

(c) e.salary=9000;

264 Mastering C++

Operation on Unions

In addition to the features discussed above, the union has all the features provided by the structure
except for minor changes, which is a consequence of the memory sharing capabilities of the union. This
is made evident by the following legal operations.

+ A union variable can be assigned to another union variable, if their tags are same.

+ A union variable can be passed to a function as a parameter.

+ The address of the union variable can be extracted by using the address-of operator (&). This union
pointer can be passed to functions.

+ A function can return a union or a pointer to the union.

Performing operations on the unions as a whole, for example, arithmetic or comparison operations
are illegal.

Scope of a Union

The members of a union have the same scope as the union itself. It is illustrated in the program
uscope. cpp. The union definition having no tag or instance variable is called anonymous union.

// uscope.cpp: scope of union declaration
#include <iostream.h>
void main()

{
union // anonymous union definition
{
int i;
char c;
float f;
}i
i=10;
c=29;
f =4.5;
cout << "The value of i is " << i << endl;
cout << "The value of ¢ is " << ¢ << endl;
cout << "The value of f is " << f << endl;
}
Run

The value of i is 0
The value of ¢ is
The value of £ is 4.5

In the above program, the scope of the union definition is limited tomain () and henoe, the scope
of its members, i, c and £ is limited tomain (). Inmain (), they can be accessed like any other local
variables. The only difference is that the variables share the same memory.

8.13 Bit-fields in Structures

C++ allows packing many data items into a single machine word for efficient and optimal usage of the
storage space. This facility is useful when a program needs flags to keep track of status information
related to various activities. Consider a program, which stores information about a person including the

Chapter 8: Structures and Unions 265

following:

« Are you possessing any formal degree ?
Are you employed ?

Single or married ?

Male or Female ?

Are you a teenage ?

Are you Indian ?

* & & ¢ o

The simplest way of achieving the above task is to define six integer variables, each keeping the
status of one item. This method requires 6*sizeof (int) bytes of memory locations. Another
mechanism of achieving it is through the use of bit masks (macros) as follows:

#define DEGREE 01

#define EMPLOYED 02
#define MARRIED 04

#define MALE 08
#define TEENAGE 16
#define INDIAN 32

Note that, the numbers must be powers of two, so that they can act as masks corresponding to the
relevant bit positions, thus accessing the bits by shifting, masking, and complementing. For instance,
the statement '
flags |= DEGREE;
sets the first bit to 1 and the statement
flags &= ~MARRIED;
clears the second bit indicating that a person is unmarried. The conditional statement
if(flags & MARRIED)
cout << "Married person";
else
cout << "Unmarried person';
is valid. These idioms (mode of expressions) are easily prone to errors. As an alternative to this mecha-
nism, C++ offers the capability of defining and accessing fields within a word directly rather than by
bitwise logical operators. A bit-field or field in short, is a set of adjacent bits within a single implemen-
tation-defined storage unit called a word. The syntax of field definition and access is based on struc-
tures. For instance, the above #de f ine statements could be replaced by the definition of six fields as
follows:

struct

{
unsigned int is_degree 1
unsigned int is_employed: 1
unsigned int is_married : 1
unsigned int is_male : 1;
unsigned int is_teenage : 1
unsigned int is_indian 1

} flags:

It defines a variable called £ 1ags which contains six single-bit fields. The number following the colon
represents the field width. The fields declared are of type unsigned int (can be int) to ensure that
they are unsigned quantities. '

266 Mastering C++

The Individual fields are referenced in the same way as other structure members. For instance,
flags.is_married
expression accesses the contents of its corresponding bit. Fields act like integers and can be used in
arithmetic expressions just like other integers. Thus, the previous examples can be written more natu-
rally as follows:
flags.is_degree = 1;
sets the first bit to 1 and the statement
flags.is_married = 0;
clears the second bit, indicating that a person is unmarried. The conditional statement
if(flags.is_married)
cout << "Married person";
else
cout -< "Unmarried person";
is valid.

Consider the following declaration which illustrates bit-fie'ds of larger width:
struct with_bits

{
unsigned first : 5;
unsigned second : 9;
};
The identifier with_bits is a structure containing 2 members: £irst and second. The member
first is an integer with S bits, and second is an integer with 9 bits. Both the numbers can be stored
in a single 16-bit entity (even though they add up to 14 bits, a 14-bit entity cannot exist in memory),
rather than two separate integers. It is illustrated in the program share. cpp.

// share.cpp: union and structure combined
#include <iostream.h>
struct with_bits
{

unsigned first : 5;

unsigned second : 9;
}i
void main()
{

union

{

with_bits b;

int 1i;
}i
i=0; // Both first and second are cleared to 0
cout << "On i = 0: b.first = " << b.first << " b.second = "< ' second;
b.first = 9; // Eirst is set to 9; second remains 0
cout << endl << "b.first = 9: *;
cout << "b.first = " << b.first << " b.second = * << b.second;

}

Run

Oni = 0: b.first = 0 b.second = 0
b.first = 9: b.first = 9 b.second = 0

Chapter 8: Structures and Unions 267

In main (), the union defines two variables b and i, and they are stored in the same memory
location. In a way, they can act as aliases. The statement,
i=0;
clears the complete word and inturn clears members of the structure with_bits. The statement
b.first = 9;
updates only the first 5-bits of the word. Note: the maximum size of each bit-field is sizeof (int).

Review Questions

8.1 What are structures ? Justify their need with an illustrative example.

8.2 Why structures are called heterogeneous data-types ?

8.3 Explain storage organization of structure variables.

8.4 Write an interactive program, which processes date of birth using structures. Enhance the same
supporting processing of multiple students date of birth.

8.5 Write a short note on passing structure type variables to a function, and suitability of different
parameter passing schemes in different situations.

8.6 Develop a program for processing admission report. Use a structure which has elements repre-
senting information such as roll number, name, date of birth (nested structure), branch allotted.
The functions processing members of a structure must be a part of a structure. The format of
report is as follows:

8.7 What are unions? Write 2 program to illustrate the use of the union.
8.8 What are the differences between structures and unions.
8.9 Write an interactive program to process complex numbers. It has to perform addition, subtraction,
multiplication, and division of complex numbers. Print results inx+1y form.
8.10 Write a union declaration for representing register model of x86 family of microprocessors. Note
that general purpose registers such as AX are also accessed by lower and higher word registers
AH and AL respectively.
8.11 Consider the following structure declaration:
struct institution
{
struct teacher (
int empl_no;
char name[20];
}i
struct student {
int roll_no;
char name([15];
}i
Y
What is the sizeof (institution), sizeof (teacher), and sizeof (student) ?

9

Pointers and Runtime Binding

9.1 Introduction

The use of pointers offers a high degree of flexibility in the management of data. Knowledge of memory
organization plays a very important role for understanding the concept of pointers. As the name
implies, pointer refers to the address identifying a programming element (data or function). Interestingly,
the system main memory is organized into code and data area as shown in Figure 9.1. Although in many
situations programming can be done without the use of pointers, their usage enhances the capability of
the language to manipulate data. Dynamic memory allocation is a programming concept wherein the use
of pointers becomes indispensable. For instance, to read the marks of a set of students and store them
for processing, an array can be defined as follows:
float marks[100];

But this method limits the maximum number of students (to 100), which must be decided during the
development of the program. On the other hand, by using dynamic allocation, the program can be
designed so that the limit for the maximum number of students is restricted only by the amount of
memory available in the system. The real power of C++ (of course C) lies in the proper use of pointers.

0 —
main ()
{
data
g - }
£ funcl ()
S {
a e e
wode : data - local data
................... N
;. Gode -
}
func2 () function stack

program memory

max addr. —

main memory

Figure 9.1: Primary memory organization

Chapter 9: Pointers and Runtime Binding 269

Memory is organized in the form of a sequence of byte-sized (8-bits per byte) locations or storage
cells containing either program code or data. These bytes are numbered starting from zero onwards.
The number associated with each cell (byte location) is known as its address or memory location. A
pointer is an entity, which contains a memory address. In effect, a pointer is a number, which specifics
alocation in memory. The key concepts and terminology associated with memory organization are the
following:

« Each byte in the memory is associated with a unique address.

« An address is a sequence of binary digits (0 or 1) of fixed length, used for labeling a byte in the
memory.

« Address is a positive integer ranging from 0 to maximum addressing capability of the microprocessor
(for instance, 8086 processor has 20-address lines and hence, it can address upto 2% Jocations:1 MB).

« Every element (data or program code) that is loaded into memory is associated with a valid range of
addresses. i.e.. each variable and function in the program starts at a particular location and spans
across consecutive addresses from that point onwards depending upon the size of the data item.

« The number of bytes accessed by a pointer depends on the data type of an item to which it is a pointer.

The address stored in a pointer variable can be relative or absolute. Most of the modern systems use
the relative addressing mode to access memory, by default. In relative addressing mode, an address
consists of two components: the base (or the segment) and the offset address. The base or segment
address designates a specific region of memory, and the offset specifies the distance of the desired
memory location from the beginning of the segment. The effective address is computed by combining
both the segment and offset values. In absolute mode, the address stored in a pointer is itself the
effective address, and hence, memory can be directly accessed using this address. Note that, relative
addressing requires mapping of logical address (offset) to physical address.

It is not always necessary to be aware of the segments and offsets while programming in C++.
unless the pointer is used to hold the address of any device specific information. For instance, in IBM-
PC and its compatibles, the display memory is located at the segment and offset value, 0xb800:0000.
(The display memory address changes from one video mode to another.)

9.2 Pointers and their Binding

Pointer is defined as a variable used to store memory addresses. It is similar to any other variable and
has to be defined before using it, to hold an address. Just like, an integer variable can hold only integers,
each pointer variable can hold only pointer to a specific data type such as int, char, float, double,
etc., or any user defined data type).

The allocation of memory space for data structure (storage) during the course of program execution
is called dynamic memory allocation. Dynamic variables so created can only be accessed with pointers.
Thus, pointers offer tremendous flexibility in the creation of dynamic variables, accessing and manipu-
lating the contents of memory location and releasing the memory occupied by the dynamic variables,
which are no longer needed. (A more detailed account of dynamic memory allocation and de-allocation
is discussed in the later sections of this chapter.) The usage of the pointer is essential in the following
situations:

« Accessing array elements.
o Passing arguments to functions by address when modification of formal arguments are to be
reflected on actual arguments.

270 Mastering C++

« Passing arrays and strings to functions.
« Creating data structures such as linked lists, trees, graphs, etc.
+ Obtaining memory fromn the system dynamically.

9.3 Address Operator &

All the variables defined in a program (including pointer variables) reside at specific addresses. Tt is
possible to obtain the address of a program variable by using the address operator &(ampersand).
When used as a prefix to the variable name, the & operator returns the address of that variable. The
program getaddr . cpp illustrates the use of the & operator.

// getaddr.cppc: use of '&' operator to access address

#include <iostream.h>

void main{()

{
// define and initialize three integer variables
int a = 100;
int b = 200;
int ¢ = 300;
// print the address and contents of the above variables
cout << "Address " << &a << " contains value " << a << endl;
cout << "Address " << &b << " contains value " << b << endl;
cout << "Address " << &C << " contains value " << c << endl;

}

Run

Address 0xfff4 contains value 100
Address Oxfff2 contains value 200
Address Oxfff0 contains value 300

In main (), the statement
cout << "Address " << &a << " contains value " << a << endl;
displays the address and contents of the variable a. The expression &a returns the address of the
variable a. It should, however, be noted that the addresses printed by the above program, depend on
the current configuration of a system. This is because the memory occupied by the program’s variables
depend on several factors such as memory management scheme, memory model, and the current status
of the memory contents.

The output shows the addresses of the variables in hexadecimal notation, and they are in the
decreasing order. From this, it is evident that all automatic variables are created in the program’s
stack area and that the stack always grows from a higher to a lower memory address. Further, each of
the addresses differ from others by exactly two bytes, since integer variables are allocated 2 bytes of
memory. The sizeof () operator can be used to determine the number of bytes allocated to each type
of variable. The integer is the fundamental data type and hence its size depends on the processor word
size, compiler, and operating system memory manager. For instance, the size of an integer data type in
MS-DOS based machines is two bytes, whereas in UNIX based machines it is four bytes.

Sufficient care must be taken to avoid any kind of confusion between the following:

« unary address operator & which precedes a variable name.
«+ binary logical operator & which performs a bit-wise AND operation.

Chapter 9: Pointers and Runtime Binding 2Nn

9.4 Pointer Variables

Pointers are also variables and hence, they must be defined in a program like any other variable. Rules
for variable names and declaring pointers are the same as for any other data type. This naturally gives
rise to questions about the data type of a pointer, size of memory allocated to a pointer and the format
for defining different types of pointers.

Pointer Definition

When a pointer variable is defined, the C++ compiler needs to know the type of variable the pointer
points to. The syntax of pointer variable definition is shown in Figure 9.2.

standard or user defined data type: asterisk followed by a
char, short, int, float, etc. pointer variable name
DataType * PtrVar, ...:

Figure 9.2: Syntax of pointer definition

DataType could be a primitive data type or user defined structure (such as structures and classes).
The PtrVar could be any valid C++ variable name. The character star (*) following the DataType
informs the compiler that the variable Pt rVar is a pointer variable. The pointer so.created can hold the
address of any variable of the specified type. Some typical pointer definitions are:

int *int_ptr; // int_ptr is a pointer to an integer
char *ch_ptr; // ch_ptr is a pointer to a character
Date *d_ptr; // d_ptr is a pointer to user defined data type

The pointer variable must be bound to a memory location. It can be achieved either by assigning the
address of a variable, or by assigning the address of the memory allocated dynamically. The address of
a variable can be assigned to a pointer variable as follows:

int_ptr = &marks;
where the variable marks is of type integer.

Pointer to characters (a string) can be defined as follows:

char *msg;

It can be initialized at the point of definition as follows:
char *msg = "abcd. .xyz";

Or, it can also be initialized during execution as follows:
msg = "abcd. .xyz";

Dereferencing of Pointers

Dereferencing is the process of accessing and manipulating data stored in the memory location pointed
to by a pointer. The operator * (asterisk) is used to dereference pointers in addition to creating them. A
pointer variable is dereferenced when the unary operator * (in this case, it is called as the indirection
operator) is prefixed to the pointer variable or pointer expression. Any operation that is performed on
the dereferenced pointer directly affects the value of the variable it points to. The syntax for dereferencing
pointers is shown in Figure 9.3. ’

272 Mastering C++

w
. 1000 95 | marks
int_ptr XXXX
1002 84 a
(@) int *int_ptr;
/\
f

.__l_—?1000 95 marks
int_ptr 1000 —

1002 84 a

(b) int_ptr = &marks;

/\
f
l_’1000 10 marks
int_ptr 1000 —
1002 84 a
(¢) *int_ptr = 10;
‘—/-\i
f
"_’1000 10 marks
int_ptr 1000 —
1002 10 a
(d) a = *int_ptr;

_/\

Figure 9.3: Pointers binding and dereferencing

Consider the statement
int_ptr = &marks;
It stores the address of the variable marks in the pointer variable int_ptr. The contents of the
variable marks can be displayed using the following statement:
cout << *int_ptr;
Effectively, the above statement achieves the same result as the statement
cout << marks;
Thus, accessing information using pointers is called indirect addressing. It refers to accessing informa-
tion, whose address is stored in a special type of variable, which is a pointer variable.

Chapter 9: Pointers and Runtime Binding 273

The contents of memory locations can be modified by using a pointer variable as follows:
*int_ptr = 25;
It assigns the value 25 to the memory location pointed to by the variable int_ptr. The contents of
the memory location can be read by using the pointer variable as follows:
a = *int_ptr;
It assigns the contents of the memory location pointed to by the address stored in the variable int_ptr

to the variable a of type integer. The program initptr.cpp illustrates the mechanism of pointer
variable definition, binding and dereferencing.

// initptr.cpp: pointer (address variables) usage demonstration
#include <iostream.h>
void main ()

{
int *iptr; // pointer to integer, figure 9.4a
int varl, var2; // two integer variables, figure 9.4b
varl = 10; // figure 9.4c
var2 = 20; // figure 9.4d
iptr = &varl; // figure 9.4e
cout << "Address and contents of varl is " << iptr << " and " << *iptr;
iptr = &var?; // figure 9.4f
cout<<"\nAddress and contents of var2 is " << iptr << * and " << *iptr;
*iptr = 125; // figure 9.4g
varl = *iptr + 1; // figure 9.4h
}
Run

Address and contents of varl is Ox1f8afff4 and 10
Address and contents of var2 is Ox1f8afff2 and 20

In main (), the first statement
int *iptr;
specifies that iptr is a pointer to an integer. The asterisk prefixed to the variable name specifies that

iptr is a pointer variable. The data type int specifies that iptx can point to any integer type item(s)
stored in the main memory. The statement

" int *iptr; // pointer to integer, figure 9.4a
could also be written as

int* iptr;

It makes no difference as far as the compiler is concerned. But there are certain advantages in following
the former convention (i.e., placing the * closer to the variable name). The compiler always associates
the * with the pointer variable name rather than the data type, thus allowing both pointer variable type
and non-pointer variable of a particular data type to be defined in a single definition. Thus, the following
statements

int *iptr; // pointer to integer, figure 9.4a
int varl, var2; // two integer variables, figure 9.4b

are valid. They can also be written in a single equivalent statement as follows:
int *iptr, varl, varl;

274 Mastering C++

An asterisk must be prefixed to the name of each pointer variable to define multiple pointers using
a single statement. For instance, the statement,
float *f1, *f2, *£3;
defines £1, £2, and £3 as pointers to float variables.
The program initptr.cpp has highlighted the following important facts about pointers:
+ The asterisk (*) used as an indirection operator has a different meaning from the asterisk used
while defining pointer variables.

« Indirection allows the contents of a variable to be accessed and manipulated without using the
name of the variable.

ioer o ™ | P
] T e
(@) int *iptr; M2 [var2 2 1 varo 2 20---- var2

(b) int varl,var2; (¢) wvarl = 10; (d) var2 = 20;
iptr —] —)
fits fm ————— 10----1 varl iptr fita ----10-—--1 varil
M2l 20— var2 fte [itz }— fit2 [20-—-{ var2
" "
(e) iptr = &varl; (f) iptr = &var2;
Y T
iptr fit4 F----10----1 varl iptr ftfa [---126—---1 varl

mo [z }— w2 we [z —»
----125---1 var2 8 ft2 H---125----1 var2

(g) *iptr = 125; (h) varl = *iptr + 1;

Figure 9.4: Dereferencing of pointers

All variables that can be accessed directly (by their names) can also be accessed indirectly by

Chapter 9: Pointers and Runtime Binding 275

means of pointers. The power of pointers becomes evident in situations, where indirect access is the
only way to access variables in memory. Figure 9.4 gives a pictorial representation of accessing a
variable using a pointer.

Pointers and Parameter Passing

Pointers provide a two way communication between the service requester and service provider. It is
achieved by passing the address of the actual parameters instead of their contents. Any modification
done to formal variables in the function will be automatically reflected in the actual parameters when
they are passed by address. A program to swap two numbers is listed in swap . cpp.

// swap.cpp: swap 2 numbers using pointers
#include <iostream.h>

void swap(float *, float *);

void main()

{
float a, b;
cout << "Enter real number <a>: ";
cin >> a;
cout << "Enter real number : ";
cin >> b;
// Pass address of the variables whose values are to be swapped
swap (&a, &b); // figure 9.6a
cout << "After swapping \n";
cout << "a contains " << a << endl;
cout << "b contains " << b;

}

void swap(float *pa, float *pb) // function to swap two numbers
{

float temp;

temp = *pa; // figure 9.6b

*pa = *pb; // figure 9.6c

*pb = temp; // figure 9.6d
}

Run

Enter real number <a>: 10.5
Enter real number : 20.9
After swapping

a contains 20.9

b contains 10.5

In main (), the statement
swap (&a, &b);
assigns addresses of the actual parameters to the formal parameters, which are of type pointers. How-
ever, they are manipulated differently (see Figure 9.5). Inmain (), the parameters are accessed directly
with their names whereas in swap (), they are accessed using the indirection operator.

276 Mastering C++

= =
e
’ L/
L

main() swap ()

—]

1310 -10.5--|a

1312 F-20.9-4b
\/—\‘

Figure 9.5: Data addressing in different perspectives

In swap (), accessing contents of the memory location pointed to by the variable pa, actually
accesses the contents of the variable a. Similarly, accessing the contents of the memory location
pointed to by the variable pb actually access the contents of the variable b. Hence, swapping the
contents of memory using pointer variables pa and pb along with the indirection operator will in fact
exchange the contents of the actual parameters a and b (passed by caller) as shown in Figure 9.6.

9.5 Void Pointers

Pointers defined to be of a specific data type cannot hold the address of some other type of variable i.e.,
it is syntactically incorrect in C++ to assign the address of (say) an integer variable to a pointer of type
float. Consider the following definitions

float *f_ptr; // pointer to float
int my_int; // integer variable

The assignment of incompatible variable address to a pointer variable in a statement such as
f_ptr = &my_int;
results in compilation error. Such type-compatibility problems can be overcome by using a general-
purpose pointer type called void pointer. The format for declaring a void pointer is as follows:
void *v_ptr; // define a pointer to void
It uses the reserved word void for specifying the type of the pointer. Pointers defined in this
manner do not have any type associated with them and can hold the address of any type of variable.
The following are some valid C++ statements:
void *vd_ptr;
int *it_ptr;
int invar;
char chvar;
float flvar;
vd_ptr = &invar: // valid
vd_ptr = &chvar; // valid

vd_ptr
it_ptr

Chapter 9: Pointers and Runtime Binding

&flvar; // valid
&invar; // valid

The following are some invalid statements:

it_ptr = &chvar; // invalid

it_ptr = &flvar; // invalid
swap ()
in() pa
mai
00
a

f#0

—pswap(&a, &b)

b
me
e

pb

temp
804

temp = "pa
*pa="pb

*pb = temp

5802 @ i

swap(&a, &b)

(a) swap(&a, &b)

swap(&a, &b)

(¢) *pa

swap ()

pa

> 1800
pb
o

temp

f804

—» ‘pa="pb

*pb = temp

(b) temp

main()

swap ()

pa

00
pb
602

temp

-—% temp ="pa
“pa="pb

*pb =temp

temp = "pa

a

fo

b
fff2 vm
-~

swap(&a, &b)

*pb;

(d) *pb

Figure 9.6: Swapping of two numbers.

= *pa;

swap ()

pa

w0

pb
0z

temp

1804

temp = "pa
*pa ="pb

—» *pb=temp

temp;

Pointers to void cannot be directly dereferenced like other pointer variables using the indirection
operator. Prior to dereferencing a pointer to void, it must be suitably typecasted to the required data

type. The program voidptr.cpp illustrates the typecasting of void poin
locations pointed to by them.

ters while accessing memory

// voidptr.cpp: the use of void pointers to hold pointer of any type

#include <iostream.h>

void main()

{
int il = 100;

// define and initialize int il to 100

278 Mastering C++

float f1 = 200.5; // define and initialize float f1 to 200.50

void *vptr; // define pointer to void

vptr = &il; // pointer assignment

cout << "il contains " << *((int *) vptr) << endl;
vptr = &f1; // pointer assignment

cout << "fl contains " << *((float *) vptr);

Run

il contains 100
fl contains 200.5

The expression * ((float*)vptr) in the statement
cout << "fl contains " << *((float *) vptr);

displays the coments of the variable f£1 using a void pointer variable with typecasting. Figure 9.7
indicates various components of the expression * ((£loat*)vptr)). When a function is designed
to do similar operations on different data types, void pointers can be used to pass parameters to the

“ function.
pointer typecasting | void pointer

*((float *) vptr)

Figure 9.7: Typecasting void pointer

9.6 Pointer Arithmetic

The size of the data type to which the pointer variable refers is the number of bytes of memory accessed
when the pointer variable is dereferenced using the indirection operator. The number of bytes accessed
by using a pointer depends on its type, but the size of the pointer variable remains the same irrespective
of the data type to which it is pointing (see Table 9.1). The size of the pointer variable is large enough to
hold the memory address. For example, when dereferenced (in a particular implementation of the C++
compiler—on 16-bit system),
a pointer to an integer accesses 2 bytes of memory
a pointer to a char accesses 1 byte of memory
a pointer to a float accesses 4 bytes of memory
a pointer to a double accesses 8 bytes of memory

The C++ language allows arithmetic operations to be performed on pointer variables. It is, however,
the responsibility of the programmer to see that the result obtained by performing pointer arithmetic is
the address of relevant and meaningful data.

* & o O

" The arithmetic operators availabie for use with pointers can be classified as

o Unary operators : ++ (increment) and -- (decrement).
« Binary operators : + (addition) and - (subtraction).

Chapter 9: Pointers and Runtime Binding

279

Data type Data size Pointer type
near far
char 1 4
short 2
int 2
(16-bit compiler)
4
(32-bit compiler)
long 4 2 4
float 4
double 8
Table 9.1: Size of data types and their pointers

The following are some of the examples of pointer arithmetic:

int a, b,

[VB el o Lo Bk e ML o Lo Bk o Lo BBl o B o Lo L o B o B o]

wo Qoo oo o

-ql

*P, *qi

(int *)(p - q):
p-4q-a;
(int *)(p - q)

+

* + +

NN N *

a;
a;
q + aj;
q;
a;
a;
b;
pi

*p * * q;

a; //

// Illegal use of pointer
// Illegal use of pointer

// Vvalid

// Invalid: Nonportable pointer conversion

// Valid

// Invalid: Nonportable pointer conversion

valid
// Vvalid

// Invalid
// Invalid
// Illegal
Illegal
// Illegal
Illegal
Illegal
valid and it is same as a

//

//
//
//

pointer addition
pointer addition

use
use
use
use
use

of pointer

of pointer

of pointer
of pointer
of pointer

= (*p) * (*aq);

The C++ compiler takes into account the size of the data type being pointed, while performing
arithmetic operations on a pointer. For example, if a pointer to an integer is incremented using the ++
operator (preceding or succeeding the pointer), then the initial address contained in the pointer is
incremented by two and not one, assuming that an integer occupies two bytes in memory. Similarly.
incrementing a pointer to float causes the initial address contained in the float pointer to be actually
incremented by 4 and not 1 (if the size of the float variable is 4 on the machine). In general. a pointer to
some type, d_type (where d_type can be primitive or user defined data type), when incremented by
an integral value i, has the following effect:

(current address in pointer) + i * sizeof(d_type)

280 Mastering C++

Consider the following statements:

float *sum;
char *name;

A statement such as
sum++; Or ++sum;
advances the pointer variable sum to point to the next element. If the pointer variable sum holds the

address 1000, on execution of the above statement, the variable sum will hold the address (1000+4)
= 1004 since the size of f1loat is 4 bytes. Similarly, when a statement such as

name++; Or ++name;
is executed, and if the pointer variable name points to address 2000 earlier, then it will hold the address

(2000+1), since the size of char is one byte. This concept applies to all arithmetic operations
performed on pointer variables.

When a pointer variable is incremented, its value actually gets incremented by the size of the type

to which it points. For example, let pi be a pointer to an integer defined with the statement

int* pi;
Also, letpi point to the memory location 1020. i.e., the number 1020 is stored in the pointer pi. Now,
a statement which increments pi, such as

pi++;
will add two top i, making it 1022 (assuming that the size of an integer is 2 bytes). This makes pi point
to the next integer. Similarly, the statement

pi--;
will decrement the value of pi by 2. The pointer arithmetic on different types is shown in Table 9.2.

Pointer variable | Pointer value | Pointer increment Pomt.er value
after increment
char * a; 10 a++;/++a; 11l (a+sizeof (char))
a=a+3; 13 (a+sizeof (char)*3)
int * b; 10 b++;/++b; 12 (b+sizeof (int))
b=b+2; 14 (b+sizeof (int) *2)

- ; Ct++;/++C; 14 (c+sizeof (long))
long * c; 10 c=c+3; 22(c+sizeof (long)*3)
float * d; 10 d++; /++d; "14 (d+sizeof (float))

d=d+2; 18(d+sizeof (float)*2)
double * e; | 10 e++; /++e; 18(e+sizeof (doubles)
e=e+2; 26 (e+sizeof (double) *2)

Table 9.2: Pointer arithmetic

Pointer arithmetic becomes significant for accessing and processing array elements efficiently (a
miore detailed account of array processing with pointers is taken up later in this chapter). Note that

Chapter 9: Pointers and Runtime Binding 281

pointer arithmetic cannot be performed on void pointers without typecasting, since they have no type
associated with them.

The elements of an array can be efficiently accessed by using a pointer. The programptrarrl.cpp
illustrates the use of pointer holding the address of arrays and pointer arithmetic in manipulating large
amount of data stored in sequence.

// ptrarrl.cpp: smallest in an array of 'n’ elements using pointers
#include <iostream.h>
void main ()
¢
int i,n, small, *ptr, a[50];
cout << "Size of the array ? ":
cin >> n;
cout << "Array elements ?\n";
for (i = 0; 1 < n; i++)
cin >> al[il;
// assign address of a[0] to pointer 'ptr'. This can be done in two
// way: 1. ptr = &al[0]; 2. ptr = a;
ptr = a;
// contents of a[0] assigned to small
small = *ptr;
// pointer points to next element in the array i.e., al[l]
pLtr++;
// loop n-1 times to search for smallest element in the array
for (i = 1; i < n; i++)

{
if (small > *ptr)
small = *ptr;
ptr++; // pointer is incremented to point to a[i+1]
}

cout << "Smallest element is " << small;

}

Run

Size of the array ? 5
Array elements ?

Smallest element is 1

In main (), the statement
ptr = a;
assigns the address of the 0" element of the array to the integer pointer ptr. Hence, the statement
small = *ptr;
effectively assigns the value of a{0] to the variable small. When ptr is incremented, the value
stored inptr is incremented by sizeof (int) (i.e..=2in DOS and = 4 in UNIX) to point to the next
element of the array.

It is interesting to note that the name of the array represents the starting address of the array 1... it
is the address of the first element in the array. Hence, the expressiun a[i] can also be represented by
the expression * (a+i).

282 Mastering C++

9.7 Runtime Memory Management

C++ provides two special operators new and delete to perform memory allocation and deallocation
at runtime respectively. These operators with their syntax and suitable examples are already discussed
in the earlier chapter on Moving from C to C++. An additional discussion on new operator follows:

The new operator must always be supplied with a data type in place of type-name. Items sur-
rounded by angle brackets are optional. The syntax of new operator is as follows:
<::> new <new-args> type-name <(initializer)>
<::> new <new-args> (type-name) <(initializer)>

The components present in the syntax has the following meaning:
¢ :: operator, invokes the global version of new.
¢ new-args can be used to supply additional arguments to new. It is used when the program has an

‘overloaded version of new that matches the optional arguments.

e initializer, if present, is used to initialize the memory.

A request for non-array allocation uses the appropriate operator new () function. Any request for
array allocation will call the appropriate operatornew [] () function. Selection of the operator is done
as follows:

+ By default, the operator new[] () calls the operator new ()

+ If a class Type has an overloaded version of operator new[] (), arrays of Type will be allocated
using Type: :operator newl[] ()

+ If aclass Type has an overloaded version of new and it is not the array allocation operator new[] (),
then the arrays of Type will be allocated using Type: :operator new()

o If none of the above cases apply, the global ::operator new() is used.
More details on dynamic objects is discussed in later chapters.

Handling Errors for the new Operator

The new operator offers dynamic storage allocation similar to the standard library functionmalloc. It
is particularly designed keeping OOPs in mind and throws an exception if the allocation fails. For more
details on handling exceptions raised by the new operator, refer to the chapter on Exception Handling.

The user can define a function to be invoked when the new operator fails. The new operator can be
informed about the new-handler function, by using set_new_handler () and pass a pointer to the
new-handler. The new operator can be configured to return NULL on failure as follows:

set_new_handler (0) .

It sets the handler to NULL so that the new operator returns NULL when it fails to allocate the requested
amount of memory and thus exhibiting the behavior of the standard functionmalloc (). The program
newhand. cpp illustrates the mechanism of handling the failure of memory allocation.

// newhand.cpp: new operator memory allocation test
#include <iostream.h>

#include <process.h>

#include <new.h>

void main(void)

{

Chapter 9: Pointers and Runtime Binding 283

int * data;
int size;
set_new_handler(0);
cout << "How many bytes to allocate: ";
cin >> size;
if((data = new int[size]))
cout << "Memory allocation success, address = " << data;
else
{
cout << "Could not allocate. Bye ...";
exit(1l);
}
delete data;

}

Runi

How many bytes to allocate: 100
Memory allocation success, address = 0x1l6be

Run2

How many bytes to allocate: 30000
Could not allocate. Bye ...

Note: A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero-size
allocations return distinct, non-null pointers.

9.8 Pointers to Pointers

C++ allows programmers to define a pointer to pointers, which offers flexibility in handling arrays,
passing pointer variables to functions, etc. The syntax for defining a pointer to pointer is:
DataType **PtrToPtr;

which uses two * symbols (placed one beside the other). It implies that PtrToPtr is a pointer-to-a-
pointer addressing a data object of type DataType. This feature is often used for representing two
dimensional arrays. The programptr2ptr.cpp illustrates the format for defining and using a pointer
to another pointer.’

// ptr2ptr.cpp: definition and use of pointers to pointers
#include <iostream.h>
void main(void)

{

int *iptr; // iptr as a pointer to an integer, figure 9.8a
int **ptriptr; // Defines pointer to int pointer, figure 9.8b
int data; ;/ Some integer location, figure 9.8c¢c

iptr = &data; // iptr now points to data, figure 9.8d
ptriptr = &iptr; // ptriptr points to iptr, figure 9.8e

~iptr = 100; // Same as data = 100, figure 9.8f

cout << "The variable 'data‘’ contains " << data << endl;
**ptriptr = 200; // Same as data = 200, figure 9.8g

cout << "The variable 'data' contains " << data << endl;
data = 300;: // figure 9.8h

284 Mastering C++

cout << "ptriptr is pointing to " << **ptriptr << endl;
)
Run
The variable ‘data’ contains 100
The variable ‘data’ contains 200
ptriptr is pointing to 300
In main (), the statement
int **ptriptr;
creates a pointer variable which holds a pointer to another pointer variable. The statement
ptriptr = &iptr;
assigns address of the pointer variable iptr to ptriptr. The value pointed by iptr can also be
accessed by ptriptr as follows:
**ptriptr
The expression * *ptriptr effectively accesses the contents of the variable data. The various opera-
tions on the pointer to a pointer are shown in Figure 9.8.

f .
iptr
iptr ptriptr ftd e [ta |—» tia
--------- data F--- ----1 data
wo] wo []
(a) int *iptr; (b) int **ptriptr;
_/\
(€) int data; (d) iptr = &data:
ptriptr .
118 -_L iptr
) —
--------- data
"100“ data
_/\
e iptr = &i ; >
(¢) periper = &iptr () +iptr = 100:
ptriptr ptriptr
ffo | fii8 iptr ftfo iptr
> 114
4 o s
--200---1 data F--300--1 daca
(9) **ptriptr = 200; (h) data = 300:

Figure 9.8: Pointers to pointer and dereferencing

Chapter 9: Pointers and Runtime Binding 285

Passing Address of a Pointer

When a pointer variable is defined, a memory location for the pointer is allocated, but it will not be
initialized. Before using the pointer variable, it should be initialized. If the pointer variable has to be
initialized in a function other than where it is defined, then the pointer’s address has to be passed to the
function. The contents of the pointer to a pointer variable can be used to access or modify the pointer
type formal variable. The program big.cpp illustrates passing the address of a pointer. so that the
pointer can be made to point to a desired variable (in this program, it is the biggest of two integers).

big.cpp: program to find the biggest number using pointers

sinclude <iostream.h>

veid FindBig(int *pa, int *pb, int **pbig)

!
// compare the contents of *pa and *pb and assign their address to pbig
if(*pa > *pb)

*pbig = pa;
else
*pbig = pb;

}

void main()
{
int a, b, *big:;
cout << "Enter two integers: *;
cin >> a >> b;
FindBig(&a, &b, &big):
cout << "The value as obtained from the pointer: " << *big;

}

Run

Enter two integers: 10 20
The value as obtained from the pointer: 20

In main(), the statement
FindBig(&a, &b, &big);
passes a, b, and big variables by address. It assigns the address of the variable a or b to the pointer
variable big. In FindBig (), the statement
*pbig = pa;
efféctively stores the address of the variable a in the pointer variable big, which is defined in the
main () function.

9.9 Array of Pointers

An array of pointers is similar to an array of any predefined data type. As a pointer variable always
contains an address, an array of pointers is a collection of addresses. These can be addresses of
ordinary isolated variables or addresses of array elements. The elements of an array of pointers are
stored in the memory just like the elements of any other kind of array. All rules that apply to other arrays
also apply to the array of pointers.

The syntax for defining an array of pointers is the same as array definition, except that the array
name is preceded by the star symbol during definition as follows:

DataType *ArrayName| ARRSIZE);

286 Mastering C++

An array of pointers is useful for holding a pointer to a list of strings. They can be utilized in
implementing algorithms involving excessive data movements. It is a traditional style to sort data. by
data movement. This method of sorting incurs much overhead in terms of both the time and space
complexity, as it requires temporary space for exchanging the data between the records and has exces-
sive data movement. This is especially true if the size of the data being sorted is large. Pointers can be
utilized to perform the same with much flexibility and less overhead. In this method. instead of data

exchange, pointers are exchanged to accomplish the same task. The program sortptr.c illustrates a
method of sorting data without swapping their contents.

// sortptr.cpp: sorting of strings by pointer movement
#include <iostream.h>
#include <string.h>
// bubble sort algorithm based sorting function. It speeds up sorting
// by exchanging the pointers instead of heavy data movement
void SortByPtrExchange(char ** person, int n)
{
int i, j, flag;
char *temp;

for(i =0; i < n-1; i++) // for i = 0 to n-2
(
flag = 1;
for(j = 0; j < (n-1-1); j++) // for 3 = 0 to (n-i-2)

{

if(strcmp(person[j], person[j+l]) > 0)

{
flag = 0; // still not sorted and requires next iteration
// exchange pointers
temp = person{j];
person([j] = person[j+1];
person[j+1l] = temp;

}
if(flag)
break; // data are in sorted order now; no need of next iteration

}
void main()
{
int i, n = 0;
char *person[100];
char choice;
do
{
person(n] = new char{40]; // allocate space for a string
cout << "Enter Name: ";
cin >> person{n++};
cout << "Enter another (y/n) ? *;
cin >> choice;
} while(choice == 'y');

Chapter 9: Pointers and Runtime Binding 287

cout << "Unsorted list: ";
for(i =0; i <n; i ++)

cout << endl << personl[il];
SortByPtrExchange(person, n)
cout << endl << "Sorted list: ";
for(i = 0; 1 <n; i ++)

cout << endl << person[i];
// release memory allocated
for{ i = 0; 1 < n; i++)

delete personlil;

}

Run

Enter Name: Tejaswi
Enter another (y/n) ? ¥
Enter Name: Prasad
Enter another (y/n) ? ¥
Enter Name: Prakash
Enter another (y/n) ? ¥
Enter Name: Sudeep
Enter another (y/n) ? ¥
Enter Name: Anand
Enter another (y/n) ?
Unsorted list:
Tejaswi

Prasad

Prakash

Sudeep

Anand)

Sorted list:

Anand

Prakash

Prasad

Sudeep

Tejaswi

=}

In main (), the statement

person(n] = new char[40];
allocates 40 bytes of memory to the (n+1)* element and stores its memory address in the array of
pointers to strings indexed by n. The statement

SortByPtrExchange(person, n)i
invokes the sorting function by passing the array of pointers and data count as actual parameters. Note
that, array is passed to a function just by mentioning its name. This is equivalent to passing an entire
array; the address of the first element of an array can be used to access any element in the array by using
offset values. The data sorted by SortByPtrExchange () do not change their physical location
(see Figure 9.9). The effect of sorting is seen when strings are accessed using pointers in a sequence.

288 Mastering C++

char *person([100]

r_,/\ —~——]
1000 1500 ————» 1500 Tejaswi person(0]
1002 1540 —————— 1540 Prasad | person(1]
1004 | 1580 —————» 1580 Prakash | person(2]

1006 1620 ——» 1620 Sudeep person(3]
1008 1660 ———» 1660 Anand person[4]

™

unsorted pointers

char *person{100]

_—

1500 Tejaswi person (0]

1000 1500

AN
1002 1540 ~ 1540 Prasad | person[1]
1004 1580 — 1580 Prakash | person(2]
1006 1620 — 1620 Sudeep person(3)
1008 1660 7 1660 Anand person (4]

/Nf

sorted pointers
Figure 9.9: Sorting using pointers

Precedence of * and [] Operators
In C++, the notations *p[3] and (*p) [3] are different since * operator has a lower precedence than
[] operator. The following examples illustrate the difference between these two notations:
l. int *data[10];
It defines an array of 10 pointers. The increment operation such as
data++; or ++data;
is invalid; the array variable data is a constant pointer.
2. int (*data) [10];
It defines a pointer to an array of 10 elements. The increment operation such as
data++; or ++data;
is invalid; the variable data will point beyond 10 integers, i.c., 10 *sizeof (int) will be addedto
the variable data. The program show . cpp illustrates the use of defining a pointer to a matrix having
arbitrary number of rows and fixed number of columns.

//show.cpp: matrix of unknown number of rows and known number of columns
#include <iostream.h>
void show(int afl([3], int m)
{
int (*c)[3]; // pointer to an array of 3 elements
c = a;
for(int 1 = 0; 1 < m; i++)

{

Chapter 9: Pointers and Runtime Binding 289

for(int 3 = 0; J < 3; j++)
cout << c[i)[j] << " ";
cout << endl;
}
)
void main ()
{
int c[2]1(31=({(1,2,3}, (4,5,6}};
show(c, 2);
)
Run
123
4 56
In show (), the statement
int (*c)[3];
defines a pointer to an array of three elements. It is useful for processing two dimensional array param-
eter declared with unknown number of rows. The statement
cC = aj
assigns the address of a two dimensional array having three columns. The variable ¢ allows to access
all the array elements in the same way as a matrix. It allows pointer increment operations such as
C++; Or ++C;

It increments pointer by 3*sizeof (int).

9.10 Dynamic Multi-dimensional Arrays

Pointers permit the creation of multi-dimensional arrays dynamically so that the amount of memory
required by the array can be determined at runtime depending on the problem size. A two dimensional
array can be thought of as a collection of a number of one dimensional arrays each representing a row.
The 2D array is stored in memory in the row major form and it can be created dynamically using the
following steps:

1. Define a pointer to pointers matrix variable: int **p;

2. Allocate memory for storing pointers to all rows of a matrix:
p = new int *[row];
3. Allocate memory for all column elements:
for(int i = 0; i < row; i++)
pli] = new int[col]:

The model of a dynamic matrix is shown in Figure 9.10. It is possible to access the two dimensional
array elements using pointers in the same way as the one-dimensional array. Each row of the two
dimensional array is treated as one dimensional array. The name of the array indicates the starting
address of the array. The expressions arrayname [i] and (arrayname+i) point to the i row of
the array. Therefore, * (arrayname+1i) +j points to the j** element in the it row of the array. The
subscript j actually acts as an offset to the base address of the i*" row. The two dimensional dynamic
matrix elements can also be accessed by using the notation a (1} []].

290 Mastering C++

P = new int * [row];
for(int i=o; 1 < row; i++)
p=new int[col];

col
s 0 1 2 3 4
pl0] > \
.p[ll >

v

pl2] : row

v

pl3]

—— ——
sizeof (int) = 2 bytes
sizeof (int*) = 2 bytes, near pointer
=4 bytes, far pointer

Figure 9.10: Model of dynamic matrix

// matrix.cpp: matrix manipulation and dynamically resource allocation
#include <iostream.h>
#include <process.h>
int **MatAlloc(int row, int col)
{
int **p;
p = new int *[row];
for(int 1 = 0; i < row; i++)
pli) = new int{ col];
return p;
}
void MatRelease(int **p, int row)
{
for(int i,= 0; i « row; i++)
delete plil;
delete p;
}
void MatRead(int **a, int row, int col)
{
int i, 3;
for(i = 0; 1 < row; i++)
for(j = 0; j < col; j++)
{

cout << "Matrix[" << i << "," << j << "] = ? ¥,

Chapter 9: Pointers and Runtime Binding 291

cin >> alil(3];
}
}
// multiplication of matrices, c3.mul(cl, ¢2): ¢3 = cl*c2
void MatMul (int **a, int m, int n, int **b, int p, int q, int **c)
{
int i, 3, k;
if(n!=p)
{
cout << "Error: Invalid matrix order for multiplication";
exit(1):
}
for(i = 0; i <m; i++)
for(j = 0; j < a; j++)
{
c[il (3] = 0;
for(k = 0; k < n; k++)
clil[j] += alil (k] * blk][3l:
}
}
void MatShow(int **a, 'int row, int col)
{
int i, 3J;
for(i = 0; i < row; i++)
{
cout << endl;
for(j = 0; j < col; j++)

cout << afi)[j] << " *;
}
}
void main ()
{

int **al **b’ **C,'

int m, n, p, 4;

cout << "Enter Matrix A details..." << endl;
cout << "How many rows ? ";

cin >> m;

cout << "How many columns ? ";

cin >> n;

a = MatAlloc(m, n);

MatRead(a, m, n);

cout << "Enter Matrix B details..." << endl;
cout << "How many rows ? “;
cin >> p;

cout << "How many columns ? ";
cin >> q;

b = MatAlloc(p, q);
MatRead(b, p, q);

¢ = MatAlloc(m, q);

MatMul(a, m, n, b, p, 4, ¢)i

292 Mastering C++

cout << "Matrix C = A *B ...";
MatShow(¢, m, q);
}

Run

Enter Matrix A details...
How many rows ? 3

How many columns ? 2
Matrix[0,0] = 2?2 1

Matrix[0,1] = ? 1
Matrix[1,0] = 2 1
Matrix{1,1] = ? 1
Matrix[(2,0] = 21
Matrix(2,1] = 2?2 1

Enter Matrix B details...
How many rows ? 2

How many columns ? 3
Matrix[0,0] = ? 1
Matrix{0,1] = 7
Matrix[(0,2] = 7
Matrix(1,0] = %
Matrix([1l,1] = ?
Matrix[1,2] =
Matrix C = A * B ...

A% ISV BEELS BERLV BRRAN |
(S S

Three-dimensional Array

A three dimensional array can be thought of as an array of two dimensional arrays. Each element of a
three dimensional array is accessed using three subscripts, one for each dimension.

As usual, the array name points to the base address of the three dimensional array. The array name
with a single subscript i contains the base address of the it® two-dimensional array. Hence
arrayname[i] or (arrayname+i)is the address of the i*" two dimensional array. The expres-
sion arrayname (i) [j] or * (arrayname+i)+3j represents the base address of the ™ row in
the i*" two dimensional array. Similarly, the expression * (* (arrayname+3j)+k) points to the k*
element in the j* row in the i*" two dimensional array. The program 3ptr.cpp illustrates these
concepts.

/ / 3ptr.cpp: pointer to 3-dimensional arrays
#include <iostream.h>
void main ()
{
int arr[2])(3]1[2) =({{2,1},{(3,6},(5,3}}, {{0,9},{(2,3},{(5,8}}};
cout << arr << endl;
cout << *arr << endl;
cout << **arr << endl;
cout << ***arr << endl;

Chapter 9: Pointers and Runtime Binding 293

cout << arr+l << endl;
cout << *arr+l << endl;
cout << **arr+l << endl;
cout << ***arr+l << endl;
for(int i=0; i < 2; i++)
{
for(int j=0; j < 3; J++)
{
for{ int k=0; k < 2; k++)
{
cout << "arr([" << i << "][" << j << "}[" << k << "] ="
cout << *{(*(*(arr+i)+j)+k) << endl;

Oxffb8

Oxffb8

Oxffb8

2

Oxffcd

Oxffbc

Oxffba

3

arr(0][0}10] =
arr[0]1(0]) (1] =
arr(0] (1} (0] =
arr(0]{1]([1] =
arr(0][2]1[0] =
arr[0](211[1] =
arr[1][0]1[0] =
arr(1][0]1[1] =
arr(1](11(0] =
arr[1][1][1] =
arr{111(21(0] =
arr{11[2](1] =

D UTWN WO WU o WRE N

The array arr will be stored in memory as shown in Figure 9.11. In the above program, the array
name arr is the base address of the three dimensional array. The expression *arr is the base address
of the 0t" two dimensional array, * *arr is the 0*" row in the 0tr two dimensional array and ***arr
contains the value stored in the 0" column and 0*" row of the 0*" two dimensional array. The expression
arr+1 is the base address of the 15t two dimensional array, *arr+1 is the address of the 1% row in
the 0" two dimensional array, * *arr+1 gives the address of 0" row and 15¢ column of a zero dimen-
sional array, ***arr+1 adds 1 to its current value (2) obtained from the 0t» element in the 0" row of
the 0" two dimensional array. The expression within the for loop prints the contents of the three
dimensional array in the order in which they are stored in memory.

294 Mastering C++

2
/ ‘4— Zeroth 2-d array ——»l(— First2-d array —»

I N l2[1]3]e[s][3]ofe]2]3]5]8]}
i] i

Oxffb8 Oxffc4

|«—3—»]

(a) Three dimensional array (b) Memory organisation for 3-D array

Figure 9.11: Pointer to 3-dimensional arrays

9.11 Pointer Constants

As mentioned earlier, the name of an array holds the starting address of the array. Hence if arr (3] is
an array of any data type, then the name of the array arr is the address of (and does not point to) the
0°" element of the array and arr+1 is the address of the 1°¢ element of the array. If arr is a pointer,
then arr+i cannot be replaced by an expression arr++ executing i times. Using the increment
operator with it (the name of the array) is incorrect as the starting address of the array has been placed
in the code directly by the compiler, thus making the array name a constant. The array name does not
have any storage location allocated unlike a pointer variable which itself has a storage location. Hence,
performing an increment operation on the address of the array (which is a constant) is like performing
the increment operation; 5++, which is meaningless. The program ptrinc.cpp illustrates these
concepts.

// ptrinc.cpp: pointers can be incremented but not an array
#include <iostream.h>
void main()
{
int ia[3) = { 2, 5, 9 };
int *ptr=ia;
for(int i = 0; 1 < 3; i++)

{

// cout << *(ia++); error, array address of ia cannot be changed
cout << " " << *ptr++; // note: pointer update
}
}
BRun
259

In the above program, the elements of the array are accessed using the pointer ptr which is
assigned the starting address of the array ia. The pointer variable ptr is incremented every time to
point to the next element. The expression ia++ is incorrect.

9.12 Pointers and String Functions

Like arrays, pointers holding address of strings are widely used for manipulating strings. C++’s library

Chapter 9: Pointers and Runtime Binding 295

or user defined functions can be used for manipulating strings. These functions assume the character
\0 as the end-of-string indicator and hence, it is not considered as part of a string data. Therefore to
store a string of length L, allocate (L+1) bytes of memory. A pointer to the string is passed to these
functions instead of the entire string. The program strfunc.cpp illustrates string manipulations
using strandard and user defined functions.

/ / strfunc.cpp: user defined string processing functions
$include <iostream.h>
#include <string.h>
// user defined string processing functions prototype
int my_strlen(char *str);
void my_strcpy(char *s2, char *sl);
void my_strcat(char *s2, char *sl);
int my_strcmp(char *sl, char *s2)
void main()
{
char temp[100), *sl, *s2, *s3;
cout << “Enter stringl: “;
cin >> temp;
sl = new char| strlen(temp)+1l];
my_strcpy(sl, temp)
cout << “Enter string2: “;
cin >> temp;
s2 = new char([strlen(temp)+1l];
my_strcpy(s2, temp);
cout << “Length of stringl: " << my_strlen(sl) << endl;
s3 = new char[strlen(sl) + my_strlen(s2) + 1 1;
my_strcpy(s3, sl);
my_strcat(s3, s2)i
cout << “Strings’ on concatenation: ® << s3 << endl;

cout << “String comparison using ..." << endl;

cout << " Library function: “ << strcmp(sl, s2) << endl;
cout << " User’s function: “ << my_strcmp(sl, s2) << endl;
delete sl;

delete s2;

delete s3;

}
int my_strlen(char *str)

{
char *ptr = str;
while(*ptr != *\0’) // move ptr to end of string
++ptr;
return ptr-str; // address of last character - starting address = length
}
void my_strcpy(char *s2, char *sl)
{
while(*sl != *\0’)
*g2+4+ = *sl++;
*g2 = ‘\0'; // copy end of string

296 Mastering C++

void my_strcat(char *s2, char *sl)
{
// move end of string
while(*s2 != *\0’)
S2++;
// append sl to s2
while(*sl !'= *\0’)
*s2++ = *sl++;
*s2 = *\0’; // copy end of string
}
int my_strcmp(char *sl, char *s2)
{
// compare as long as they are equal
while(*sl == *s2 && (*sl != NULL || *s2 != NULL))
{
sl++;
S2++;
}
return *sl - *s2;

}

Run

Enter stringl: Object
Enter string2: Oriented
Length of stringl: 6
Strings’ on concatenation: ObjectOriented
String comparison using ...
Library function: -16
User's function: -16

9.13 Environment Specific Issues

Pointer variables, like other variables are also allocated memory whenever they are defined. The size of
the memory allocated (in bytes) to a pointer variable depends on whether the pointer just holds the
offset part of the address, or both the segment and offset values. The memory model in wnich the
program is compiled also influences the size of the pointer variables used in that program. C++ compil-
ers (such as Borland or Microsoft C++) running under DOS environment support six different memory
models, each of which determines the amount of memory allocated to the program’s data and code (see
Table 9.3).

Normally, all pointers defined in a program in the small model contain only the offset part of the
address. Such pointers are known as near pointers, for which two bytes of memory are allocated. The
use of near pointers limits the programmer to access only those memory locations, which lie within a
single segment only. (The maximum size of a segment is 64 KB). This limitation can be overcome by the
use of pointers, which are capable of holding both the segment as well as the offset part of an address.
Such pointers are called far pointers, for which four bytes of memory is allocated. It is possible to
access any memory location, using far pointers. The far pointers can be defined (even in a small memory
model) by using the keyword far as follows:

int far *ifarptr; // defines a far pointer to int

Chapter 9: Pointers and Runtime Binding 297

char far *cfarptr; // defines a far pointer to char

In the compact and large models, the data area can be more than 64K but any single data structure (like
array or structure) should be smaller than 64 KB. For example. if an array is defined as int far
=ary:,thenary will have both a segment and an offset part, but when pointer arithmetic is done, oniv
the offset part 1s used and not the segment part. If ary = 0x5437:0xfffe and it is incremented
then ary will become 0x5437:0x0000 i.e., the offset part wraps around and the segment part
remains unchanged, hence any single data structure should be less than 64 K. However, such limita-
tions are overcome in other memory models such as huge.

Memory Segment . Pointer
model Code Data Stack Code Data
Tiny 64K near near
Small 64K 64K near near
Medium IMB 64K far near
Compact 64K IMB near far
Large IMB IMB far far
Huge IMB 64K each 64K cach far far

Table 9.3: Memory models

C++ compilers in MS-DOS normally provide three specialized, predefined macros viz., MK_FP,
FP_SEG, and FP_OFF for use with far and huge pointers. The MK_FP macro takes two unsigned
integer input arguments which are the segment and the offset addresses of the location to be accessed
and returns a value that can be used to initialize a far or huge pointer variable. Here is an example for
initializing a far pointer variable.

char far *cptr; // define a far pointer variable

cptr = (char far *) MK_FP(0xb800, 0x0000);

It causes the far pointer cptr to point to a byte which resides in segment 0xb800 (in hex) and
at an offset 0x0000 (in hex). Note that, the macro function MK_FP returns a far pointer 1o
void which must be typecasted suitably before its use.

The macros FP_SEG and FP_OFF require a far pointer as their only input argument, and they
return the segment and offset parts of the address contained in that far pointer. The three macros
mentioned above become available by including the header file dos . h.

The program farptr.cpp defines a far pointer to a character, initializes it with an arbitrary
address (say segment = 0xb800 and offset= 0x0000), extracts and prints the segment and
offset of the same pointer. It also prints the ASCII character residing at the address b800:0000.

,/ farptr.cpp: far pointers and related macros to access display memory
#include <dos.h>

tinclude <iostream.h>

r21d main ()

298 Mastering C++

char ch;

char far *cptr; // define far pointer to character
unsigned int seg_val, off_val;

// initialize far pointer

cptr = (char far *) MK_FP(0xb800, 0x0000) ;

// fetch segment address from far pointer

seg_val = FP_SEG(cptr)

// fetch offset address from far pointer

off_val = FP_OFF (cptr);

ch = *cptr;
cout << "Character at 0xb800:0x0000 = " << ch << endl;
cout << "Segment part of cptr = " << hex << seg_val << endl;
cout << "QOffset part of cptr = " << hex << off_val << endl;
}
Run

Character at 0xb800:0x0000 = S
Segment part of cptr = b800
Offset part of cptr = 0

Note: The ASCII character printed by the above program will be the same as the first character on the
top left corner of the monitor. It is because the address b8000 : 0000 is a location in the video memory,
which holds the- ASCII value of the character appearing in the top left corner in the text mode.

9.14 Pointers to Functions

A pointer-to-function can be defined to hold the starting address of a function, and the same can be
used to invoke a function. It is also possible to pass addresses of different functions at different times
thus making the function more flexible and abstract. The syntax of defining a pointer to a function is
shown in Figure 9.12.

pointer to function

ReturnType (*PtrToFn) (arguments_if_any) ;
Figure 9.12: Syntax of defining pointer to function

The definition of a pointer to a function requires the function’s return type and the function’s
argument list to be specified along with the pointer variable. It should be remembered that the function
prototype or definition should be known before its address is assigned to a pointer.

Once a pointer to a function is defined, it can be used to point to any function which matches with
the return type and the argument-list stated in the definition of the pointer to a function. Consider a
statement such as

int (*any_func) (int, int)
It defines the variable any_func as a pointer to a function. The variable any_ func can point to any
function that takes two integer arguments and returns a single integer value. For instance, it can point
to the following functions:

int min(int a, int b);

Chapter 9: Pointers and Runtime Binding 299

int max{ int a, int b);
int add(int x, int y);

Address of a Function

The address of a function can be obtained by just specifying the name of the function without the
trailing parentheses. The following statements assign address of the functions to pointer to the
function variable any_ func since prototype of all of them is same:

any_func = min;

any_func = max;

any_func = add;

Invoking a Function using Pointers

The syntax for invoking a function using a pointer to a function is as follows:
(*PtrToFn)(arguments_if_any),
or
PtrToFn(arguments_if_any);

Consider the following pointer to functions

int (*pfuncl) (int);
float (*pfunc2) (float, float);

If these hold addresses of an appropriate function, the statements
(*pfuncl) (2);
(*pfunc2)(2.5, a);
pfuncl(i);

invoke functions pointed to by them. The parameters can be constants or variables.

In the definition of pointers to functions, the pointer variable along with the symbol * plays the role
of the function name. Hence, while invoking functions using pointers, the function name is replaced by
the pointer variable. The program rfact . cpp illustrates this concept.

// rfact.cpp: pointer to function and its use
#include <iostream.h>
long fact(int num)
{
if(num ==.0)
return 1;
else
return num * fact(num - 1);
}
void main(void)

{

int n;

long (*ptrfact) (int); // definition of pointer to function
ptrfacc = fact: // address of function to pointer assignment
sout << “Enter the number whose factorial is to be found: *;

zin >> n:

long fi = (*ptrfact) (n);

cout << "The factorial of " << n << " is " << fl << endl;
cout << "The factorial of " << n+l << " is * << ptrfact(n+l) << endl;

300 Mastering C++

Run
Enter the number whose factorial is to be found: 5
The factorial of 5 is 120
The factorial of 6 is 720

In the above program, a pointer ptr fact is defined to point to a function which takes an integer
argument and returns an integer value. Then the address of the function fact is assigned to the
pointer ptrfact. The function fact computes the factorial of a given positive integer. The function
fact is invoked using the pointer variable ptrfact.

Recursive call tomain ()
When an attempt is made to invoke main () within a program, generally compilers generate an error
message such as:
cannot call main from within the program

Because in C++, main () cannot be invoked recursively; however it is compiler dependent. The
following operations cannot be performed on main ():

e main () cannot be invoked recursively.

emain() cannot be overloaded

e main() cannot be declared inline

e main () cannot be declared static

The first restriction can be violated by using a pointer to functions. The program rmain.cpp
invokes main () recursively using a pointer to functions.

// rmain.cpp: recursive call to main() using a pointer to functions
#include <iostream.h>
void main{()
{
void (*p) ();
cout << "Hello...";
p = main;
(*p) O);
}

Run
Hello...Hello...Hello...Hello...Hello...Hello.. .Hello.. .Hello.. .Hello...Hello. ..

The above program generates Hello. . . message indefinite number of times. It stops when stack
overflow occurs. In main (), the statements
p = main;
(*p) ()i
assign the address of main to the pointer p and transfer control tomain () using pointer to a function
respectively.

Passing Function Address

The address of a function can be passed as an argument to functions, either by a function name or a
pointer holding the address of a function. The program passfn.cpp illustrates these concepts. It
takes two integer parameters and returns the largest and smallest among them.

